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A B S T R A C T

Cloud and cloud shadow detection is a necessary preprocessing step for optical remote sensing applications
because of the huge negative influence cloud and cloud shadow can have on data analysis. However, most of the
existing cloud/shadow detection methods are designed based on specific band configurations of certain sensors,
and their working mechanisms are relatively complex and computationally complicated, which limits their
application. In view of this, in this paper, a unified cloud/shadow detection algorithm based on spectral indices
(CSD-SI) is proposed for most of the widely used multi/hyperspectral optical remote sensing sensors with both
visible and infrared spectral channels. On the one hand, the cloud index (CI) and cloud shadow index (CSI) are
proposed to indicate the potential clouds and cloud shadows based on their physical reflective characteristics. In
addition, considering the spatial coexistence of cloud and cloud shadow, a spatial matching strategy is utilized to
remove the pseudo cloud shadows. The effectiveness of the proposed CSD-SI algorithm is demonstrated on eight
different types of widely used multi/hyperspectral optical sensors, with different spectral and spatial resolution
levels. Overall, in the experiments undertaken in this study, CSD-SI achieved a mean overall accuracy of 98.52%
for cloud, with a mean producer’s accuracy of 93.13% and a mean user’s accuracy of 98.13%. For cloud shadow,
CSD-SI achieved a means producer’s accuracy of 84.33% and a mean user’s accuracy of 89.12%. The experi-
mental results show that the proposed CSD-SI method based on spectral indices can obtain a comparable cloud/
shadow detection performance to that of the other state-of-the-art methods.

1. Introduction

Optical remote sensing images (such as Landsat/SPOT) are usually
affected by clouds and their associated shadows (Dozier, 1989; Zhu and
Woodcock, 2012; Zhu et al., 2015; Irish et al., 2006; Wu et al., 2016),
which leads to disturbance and obstacles for Earth observation and can
cause serious problems for various remote sensing applications, such as
vegetation monitoring (Lu et al., 2017), land-cover/use analysis (Zhu
and Woodcock, 2014), change detection (Zhu, 2017), and so on.
Especially for quantitative analysis, the influence of clouds and their
associated shadows is non-negligible with regard to the reliability of the
conclusion. On the other hand, in many cases, acquiring a clear remote
sensing image can consume a large amount of time, labor, and money.
Hence, even if it is generally not possible to retrieve the missing in-
formation caused by cloud/shadow occlusion, it is still very important
and necessary to accurately identify the cloud and cloud shadow in
satellite images and screen them out before any kind of remote sensing

application is performed.
Generally speaking, clouds are characterized by a higher reflectance

and lower brightness temperature (BT) than other land materials
(Platnick et al., 2003; Clerbaux et al., 2009; Zhu and Woodcock, 2012;
Zhu et al., 2015; Sun et al., 2017), i.e., they generally appear white or
gray in RGB space and dark in the thermal infrared band. However, it is
not easy to accurately distinguish clouds from other bright land mate-
rials (such as rocks, bare soil, cement roads, and buildings) due to their
similar reflective characteristics. In addition, the use of the thermal
infrared band generally only works well for the thick, opaque clouds,
and this approach obviously cannot be applied to the optical remote
sensing sensors without this band, which limits its application field.

To date, many automatic cloud detection methods have been de-
veloped, which can be coarsely divided into two main categories:
single-scene based methods and multi-scene based methods. In com-
parison, the multi-scene based methods are less popular although they
generally have a higher detection accuracy than the single-scene based
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methods (Goodwin et al., 2013; Jin et al., 2013; Lin et al., 2015) be-
cause of the utilization of the increased information offered by multi-
temporal images, i.e., at least two images over the same imaging area
within a short period.

In 1976, “tasseled cap” (TC) transformation was first developed as a
single-scene based mist or cloud detector (Kauth and Thomas, 1976).
However, it fails to obtain satisfactory results in many cases as clouds
and other materials do not strictly satisfy the simple TC orthogonal
relationship assumption. Subsequently, Zhang et al. (2002) proposed
the effective and notable “haze optimized transformation” (HOT) cloud
detection algorithm by linearly regressing the blue and red bands to
obtain a “clear-sky line”, and utilized the distance to this line to sepa-
rate clouds and other materials. Although HOT usually shows a better
detection performance than TC, it often results in overestimation. The
reason for this is that the HOT test often cannot effectively exclude
other bright materials, such as rock and cement road (Zhu and
Woodcock, 2012). In recent years, cloud detection algorithms based on
machine learning have been developed, including Markov random field
based methods (Le Hégarat-Mascle and André, 2009; Vivone et al.,
2014; Li et al., 2018), neural network based methods (Hughes and
Hayes, 2014), and support vector machine based methods (Li et al.,
2015; Bai et al., 2016; Ishida et al., 2018), and have shown great po-
tential. However, these methods generally have a high computational
complexity and are time-consuming.

For cloud shadows, it is generally more difficult and challenging to
effectively distinguish them from other dark land objects, such as water
and topographical shadows (Zhu and Woodcock, 2012; Sun et al.,
2018). This is because the reflective characteristics of these materials
are very similar to those of cloud shadows. In addition, the reflective
characteristics of cloud shadows are affected by the types of underlying
land objects, to a large degree, which means that large spectral varia-
bility exists within cloud shadows. As a result, it is very difficult to
accurately detect cloud shadows, and a large amount of noise can ap-
pear in the cloud shadow detection results.

With regard to cloud shadow detection, a large number of methods
have been proposed, which can be coarsely divided into three main
categories. The first category is based on projection law, and these
methods utilize the sensor parameters (including the solar azimuth
angle, solar altitude, and sensor altitude) as prior knowledge to calcu-
late the projection direction of the cloud shadows (Simpson and Stitt,
1998). The second category is based on the use of the matched filter to
identify the cloud shadows, which can be evaluated by the spectral
band covariance matrix (Richter and Muller, 2005). The third category
is spectral analysis combined with geometrical methods (Li et al.,
2013), where geometrical operations are utilized to fill the gaps of the
spectral tests. However, these approaches do not fully consider the large
spectral variability of cloud shadows and the serious disturbance of
dark pixels. Therefore, they generally fail to accurately detect cloud
shadows.

In recent years, many cloud/shadow detection algorithms for spe-
cific satellite sensors have been proposed, especially for the Landsat
series of sensors (Huang et al., 2010a,b; Roy et al., 2010). This is a
result of the Landsat free-access policy and the fact that it is a valuable
remote sensing data source for the observation and monitoring of the
Earth’s surface (Kennedy et al., 2010). For example, the classical au-
tomatic cloud cover assessment (ACCA) algorithm (Irish et al., 2006)
was designed for the cloud cover assessment of Landsat 7 imagery. In
recent works, the F-mask algorithm and its improved versions (Zhu and
Woodcock, 2012; Zhu et al., 2015; Qiu et al., 2017) have been proposed
for Landsat imagery and have obtained excellent cloud/shadow detec-
tion performances through a series of spectral tests and an object-based
cloud and cloud shadow matching process. As a result, the F-mask al-
gorithm and its improved versions have already been successfully used
for practical applications with large amounts of Landsat images. How-
ever, many of the cloud/shadow detection algorithms designed for
specific satellite sensors have some limitations, i.e., these algorithms

tend to select a low threshold in the detection procedure to identify all
potential clouds, which generally leads to overestimation (Zhu et al.,
2015). In addition, they are reliant on the thermal infrared band (Zhu
and Woodcock, 2012; Qiu et al., 2017) or the cirrus band (Zhu et al.,
2015), and hence cannot be effectively applied to other optical sensors
(such as IKONOS) without the thermal infrared band or cirrus band.

An automatic multi-feature combined (MFC) method was recently
proposed for the cloud and cloud shadow detection of Gaofen-1 (GF-1)
wide field of view (WFV) imagery (Li et al., 2017). The MFC method
first generates a preliminary cloud mask by threshold segmentation
based on the spectral features and guided filtering. The geometric and
textural features are then incorporated to improve the cloud detection
result and produce the final cloud mask. The cloud shadow mask can be
acquired by means of the cloud and shadow matching and the follow-up
correction process. The MFC method can obtain an outstanding detec-
tion performance for GF-1 images.

However, to date, very few unified cloud/shadow detectors have
been developed. Most of the existing methods are designed based on the
specific band configurations of certain sensors and have limited gen-
eralizability. However, in many remote sensing applications, different
remote sensing data sources must be simultaneously utilized (Zhu and
Woodcock, 2012; Zhu et al., 2015), and it would take a lot of time and
labor to select an appropriate cloud/shadow detection algorithm for
each optical remote sensing sensor. Therefore, a unified cloud/shadow
detection method, which can work well for various optical remote
sensing sensors, is urgently required.

In view of this, in this paper, a unified cloud/shadow detection al-
gorithm based on spectral indices (CSD-SI) is proposed for various
multi/hyperspectral optical remote sensing sensors with both visible
and infrared spectral channels. Firstly, based on the reflective char-
acteristics of cloud and cloud shadow, the cloud index (CI) and cloud
shadow index (CSI) are proposed for cloud and cloud shadow detection,
respectively. These two indices are designed by integrating the visible
and infrared spectra to fully consider the reflective characteristics of
clouds and their associated shadows, which can effectively indicate the
potential clouds and cloud shadows with few outliers, i.e., pseudo
clouds or pseudo cloud shadows. Secondly, by fully considering the
spatial coexistence of cloud and cloud shadow, a spatial matching
strategy is utilized to remove the pseudo cloud shadows. The proposed
CSD-SI algorithm is a unified cloud/shadow detection method for use
with most of the widely used multi/hyperspectral optical remote sen-
sing sensors with different spectral and spatial resolution levels. In
other words, the proposed CSD-SI algorithm is not designed for specific
sensors and is relatively robust to the channel designations of different
sensors, as long as they include both visible and infrared bands.
Furthermore, owing to the simple working mechanism, the proposed
CSD-SI algorithm has a relatively low computational cost and makes
sense for practical multi-source remote sensing applications.

The rest of this article is organized as follows. Section 2 describes
the proposed cloud/shadow detection framework based on spectral
indices (CSD-SI) in detail. Section 3 presents the experimental results.
Section 4 discusses and analyzes the detection performance of the
proposed algorithm in detail. Section 5 concludes the paper and hints at
plausible future research lines.

2. Algorithm: Cloud/shadow detection based on spectral indices

In the remote sensing application field, spectral indices have been
widely and successfully applied to various activities. Examples of the
popular spectral indices are the normalized difference vegetation index
(NDVI) for vegetation identification (Goward et al., 1991; Tucker et al.,
2005; DeFries and Townshend, 1994), the normalized difference water
index (NDWI) for water detection (Gao, 1996; McFeeters, 1996), and
the normalized difference snow index (NDSI) for snow extraction
(Dozier, 1989). Although these spectral indices are relatively simple,
their performances are generally satisfactory, and they can usually meet
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the requirements of practical remote sensing applications, owing to
their very low computational cost. Enlightened by the effectiveness of
these spectral index based methods, a unified cloud/shadow detection
algorithm based on spectral indices (CSD-SI) is proposed here. CSD-SI
can simultaneously detect clouds and their associated shadows with a
relatively high accuracy and low computational complexity, and it can
work well for most of the widely used multi/hyperspectral optical re-
mote sensing sensors with both visible and infrared spectral channels.
As an overview, the workflow of the proposed CSD-SI algorithm is
depicted in Fig. 1. A detailed introduction is given in the latter sections.

2.1. Cloud index and cloud detection

Generally speaking, cloud has its own reflective characteristics in
optical remote sensing images. Indeed, the brightness of cloud-con-
taminated regions increases with a relatively large magnitude in the
visible, near-infrared (NIR), and short wave infrared (SWIR) bands. This
means that the digital number (DN) values of cloud pixels are much
larger than those of other materials in these bands, especially for thick
clouds. Meanwhile, cloud pixels also have similar reflective character-
istics in the visible and infrared bands, which are commonly different
from other land-cover materials, as shown in Fig. 2.

Based on the aforementioned reflective characteristics, the CI index
is proposed to distinguish clouds from other land materials. Most of the
widely used moderate/low-resolution multi/hyperspectral remote sen-
sing sensors have both NIR spectral channels and SWIR spectral chan-
nels, but the high-resolution sensors commonly only feature the NIR
spectral channel. According to whether or not the SWIR bands are

included, the CI index can be alternatively formulated as the following
two forms:
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where BB, BG, and BR denote the blue, green, and red bands, respec-
tively, which are in the visible range. BNIR, −BSWIR 1, and −BSWIR 2 denote
the three infrared bands: the NIR band, the SWIR band with a shorter
wavelength, and the SWIR band with a longer wavelength, respectively.

In Eq. (1-a), the CI1 index, i.e., the ratio of the sum of the infrared
bands and the sum of the visible bands, is utilized to measure the si-
milarity of the reflective characteristics in the visible bands and the
infrared bands. Generally speaking, considering that clouds usually
have similar reflective properties in the visible bands and the infrared
bands, the CI1 index usually lies in a very narrow range around 1. In Eq.
(1-b), the CI2 index, i.e., the mean of all the related spectral bands, is
constructed to describe the brightness property of clouds. The clouds
can be effectively detected with the following formulation:

− < >T or TCI CI(| 1| ) ( )1 1 2 2 (2)

where T1 is a small threshold and T2 is a large threshold, which are
explained in detail in Section 2.3. From the theoretical perspective,
through combining these two identification criteria, the clouds in the
images can be detected, with the disturbance factors caused by other
bright land materials such as rock, bare soil, and cement road excluded,

Optical remote sensing images

Compute the CI index Compute the CSI index

abs(CI1) < T1 and CI2 > T2 CSI < T3 and Band_blue < T4

Blue band

Preliminary cloud shadow maskPreliminary cloud mask

Median filter

Final cloud mask

Spatial matching

Refined cloud shadow mask

Median filter

Final cloud shadow mask

Cloud and cloud shadow mask

Preliminary cloud mask Preliminary cloud shadow mask

Final cloud mask

Refined cloud shadow mask

Final cloud shadow mask

Fig. 1. The workflow of the proposed cloud/shadow detection algorithm based on spectral indices (CSD-SI).
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as few land materials simultaneously satisfy both the CI1 and CI2 con-
straints.

2.2. Cloud shadow index and cloud shadow detection

Compared with cloud detection, cloud shadow detection is more
complex and difficult (Le Hégarat-Mascle and André, 2009; Zhu and
Woodcock, 2012; Zhu et al., 2015). The reason for this is that cloud
shadow can be cast on any kind of land object, and the DN values only
partly reflect the characteristics of cloud shadow. This means that the
reflective characteristics of cloud shadow are highly dependent on the
underlying land objects. Hence, an effective detection rule is not easy to
define. In addition, the reflective characteristics of some dark land
objects (such as water and topographical shadow) are very similar to
those of cloud shadow, which makes it a challenging task to accurately
separate cloud shadow from other land objects.

Firstly, using the same strategy as cloud detection, an effective
spectral index should be designed with the most representative and
distinguishable spectral channels to indicate potential cloud shadows. A
widely used prior for cloud shadows is that cloud shadows are mainly
illustrated by scattered light as beam solar radiation is blocked by
clouds (Zhu and Woodcock, 2012). Furthermore, atmospheric scat-
tering is stronger in the shorter wavelengths, i.e., the visible bands, and
the diffusive radiation in shadows is weaker in the longer wavelengths,
i.e., the NIR and SWIR bands, leading to cloud shadows being darker
than their surroundings (Luo et al., 2008; Zhu and Woodcock, 2012;
Zhu et al., 2015). On the other hand, many kinds of land objects have a
relatively high reflectance in the NIR and SWIR bands, including ve-
getation, rock, and bare soil, which makes the darkening effect of cloud
shadows more obvious in these bands. In addition, the NIR band is
widely utilized in cloud shadow detection and has been verified to be
effective (Le Hégarat-Mascle and André, 2009; Zhu and Woodcock,
2012; Zhu et al., 2015; Qiu et al., 2017; Li et al., 2017). Therefore, the
NIR band is utilized to detect cloud shadow in our work, and in order to
further enhance the difference between cloud shadow and other ma-
terials, the SWIR-1 band is also utilized together with the NIR band to
design the cloud shadow indicator. The SWIR-2 band is not included,
because of its relatively large difference in spectral range compared

with the other bands.
Based on the aforementioned reflective characteristics, the CSI

index is proposed to detect the cloud shadows contained in optical
images. Similar to the CI index, according to whether or not the SWIR-1
band is included, the CSI index can be alternatively constructed as the
following two formulations:

= + =− orCSI B B CSI B( )/2NIR SWIR NIR1 (3)

where the CSI index is designed as the mean of the NIR band and the
SWIR-1 band, or only the NIR band, and is utilized to denote the re-
flective properties of cloud shadow in the longer wavelengths.
However, water usually has similar very dark characteristics in these
bands, and some other constraints need to be added to exclude water
and identify the cloud shadows cast on water. With consideration of the
relatively high reflectance of water in the shorter wavelengths, i.e., the
blue band, the blue band is utilized to exclude water. With these two
spectral tests, the cloud shadow can be identified as follows:

< <T and TCSI B( ) ( )B3 4 (4)

where T3 and T4 are small thresholds, which are explained in detail in
Section 2.3.

However, in many cases, topographical shadows cannot be abso-
lutely excluded only with these spectral tests, as they have very similar
reflective characteristics to cloud shadows. As is known to us all, cloud
shadows are generated by cloud occlusion. That is to say, clouds and
cloud shadows should show spatial coexistence (Le Hégarat-Mascle and
André, 2009; Zhu and Woodcock, 2012; Zhu et al., 2015). Based on this
fact, the spatial coexistence can be incorporated to remove the pseudo
cloud shadows and refine the detection result. Specifically, the coarse
cloud shadow detection result obtained by the CSI test can be pixel-wise
refined by the spatial matching strategy. This strategy involves
searching for cloud pixels in the local spatial neighborhood of each
potential cloud shadow pixel, to determine whether it is a real cloud
shadow pixel or not. If some cloud pixels exist within the local neigh-
borhood, the potential cloud shadow pixels are finally determined as
real ones. Otherwise, they are determined as pseudo cloud shadow
pixels and removed. In this way, the disturbances caused by topo-
graphical shadows can be effectively relieved and the cloud shadow

Fig. 2. A cloud-contaminated image of the Landsat 5 TM sensor. (a) True RGB image. (b) Blue band image. (c) Green band image. (d) Red band image. (e) Near-
infrared band image. (f) Short wave infrared band image with shorter wavelength. (g) Short wave infrared band image with longer wavelength. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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detection result can be refined.
On the other hand, clouds and cloud shadows actually have a pre-

cise geometric relationship (Le Hégarat-Mascle and André, 2009; Zhu
and Woodcock, 2012; Zhu et al., 2015), in that cloud shadows are al-
ways present along a certain direction to clouds, according to geome-
trical projection law. In practice, the spatial searching process is only
needed on one side of the shadows for a certain imaging scene. In our
study, a rectangular local window is utilized to flexibly control the
search range. The process of cloud shadow detection is depicted in
Fig. 3.

With the CI and CSI indices, the proposed CSD-SI algorithm can
effectively detect clouds and their associated shadows at the same time.
Through the spatial matching strategy, the pseudo cloud shadows, i.e.,
the topographical shadows, can be removed. A median filter is then
utilized as a post-processing step for the cloud detection map and cloud
shadow detection map, respectively, to further remove the noise and
refine the detection results. Finally, the refined cloud detection map
and cloud shadow detection map are combined to generate the cloud/
shadow detection thematic map. The proposed CSD-SI algorithm is
summarized in Algorithm 1.

Algorithm 1. The Proposed CSD-SI Algorithm for Cloud/Shadow
Detection of Multi/Hyperspectral Optical Remote Sensing Images

Input data: the original multi/hyperspectral optical remote sensing
image.

Main algorithm:
(1) Cloud detection:

Mask clouds according to Eq. (2) with the CI spectral index
defined in Eq. (1);

Conduct post-processing with the median filter to remove
noise/outliers and refine the detection result to obtain the final
cloud detection result.

(2) Cloud shadow detection:
Mask all the potential cloud shadows according to Eq. (4)

with the CSI spectral index defined in Eq. (3);
Refine the cloud shadows with spatial matching with the

help of the cloud detection result;
Conduct post-processing with the median filter to remove

noise/outliers and further refine the detection result to obtain
the final cloud shadow detection result.

(3) Cloud/shadow detection:
Combine the refined cloud detection map and cloud shadow

detection map to generate the final cloud/shadow detection
thematic map.

Output result: the cloud/shadow detection thematic map.

2.3. Parameter setting

In the proposed CSD-SI algorithm, there are eight parameters: four
threshold parameters for the spectral tests, two size parameters for the
local search window, and two kernel size parameters for the median
filter. In this section, the sensitivity of each parameter is first theore-
tically analyzed. The parameter setting rules are then described in de-
tail.

2.3.1. Theoretical analysis of parameter sensitivity
T1 is a threshold parameter of the CI1 index in the cloud detection,

and is utilized to constrain the similarity of the reflective characteristics
of clouds in the visible and infrared bands. If T1 is set too large, e.g.,
more than 10, the exclusion power will be weakened, which may result
in more outliers caused by other bright land-cover materials and an
increment of the commission rate. On the other hand, if T1 is set too
small, e.g., less than 0.1, the detection capability will be limited and

many clouds will be missed, which will lead to an increase of the
omission rate.

T2 is a threshold parameter of the CI2 index in the cloud detection,
and is utilized to constrain the brightness property of clouds. As clouds
are usually brighter than other land materials, T2 is generally set as a
relatively large value. Even for the thin cirrus clouds which may not be
so bright, their reflectance is still higher than clear-sky pixels. Generally
speaking, a smaller T2 leads to more clouds being detected, but will also
result in larger commission errors. Conversely, a larger T2 can better
screen out the outliers caused by other bright land-cover materials, but
will lead to larger omission errors.

T3 is a threshold parameter of the CSI index in the cloud shadow
detection, which is used to describe the dark property of cloud shadows.
T3 is generally set as a relatively small value. In general, a largerT3 leads
to more cloud shadows being detected, but will lead to larger com-
mission errors, while a smaller T3 will miss many of the cloud shadows,
but will guarantee lower commission errors.

T4 is a threshold parameter to remove the influence of water in the
cloud shadow detection process, and is generally set as a relatively
small value. Similarly, a smaller T4 can better exclude the influence of
water, but will also lead to a higher omission rate.

T5 and T6 are two size parameters for the height and width of the
local search window, which are utilized to control the spatial search
range in the cloud/shadow matching procedure. If T5 and T6 are set as
small values, many real cloud shadows will be missed. If they are set as
larger values, the time consumption will become greater. Therefore, a
tradeoff should be determined between the accuracy and the time
consumption in practice.

T7 and T8 are two kernel size parameters of the median filters for
cloud and cloud shadow, which are utilized to control the smoothing
strength of noise. Generally speaking, larger values of T7 and T8 can
better filter out the noise, but will lead to some deterioration in the
cloud and cloud shadow detection effects.

2.3.2. Parameter setting rules
In order to make the CSD-SI algorithm convenient and practical for

real remote sensing applications, recommended values and formula-
tions for the parameters are given in the following. Without special
instructions, min(·), mean(·), and max(·) refer to the minimum, mean,
and maximum value of a synthetic band, i.e., CI2 and CSI, or a specific
band, i.e., blue band (BB), respectively. Although these values are
image-related, they can be easily and automatically calculated for a
certain image. This means that, for any optical remote sensing sensor
with both visible and infrared bands, these values can be easily ob-
tained according to the formulations and the recommended values.
Hence, these values do not affect the generalizability and practicability
of the proposed CSD-SI algorithm.

For the first parameter T1, it is generally set as a small value, e.g., 1.
The value ofT1 is selected from the set of {0.01, 0.1, 1, 10, 100} and can
be easily fine-tuned for particular image scenes through a few experi-
ments.

Parameter T2 is always set as a large value. Considering the re-
flective characteristics of various land-cover objects, in practice, T2 can
be adaptively determined as follows:

= + × −T tCI CI CImean( ) (max( ) mean( ))2 2 2 2 2 (5)

where ∈t (0, 1)2 is an adjusting coefficient, which is generally selected
from the set of {1/10, 1/9, 1/8, 1/7, 1/6, 1/5, 1/4, 1/3,1/2}.

The third parameter T3 is generally set as a small value. Similarly, it
can be obtained as follows:

= + × −T tCSI CSI CSImin( ) (mean( ) min( ))3 3 (6)

where ∈t (0, 1)3 is an adjusting coefficient, which is generally selected
from the set of {1/4, 1/3, 1/2, 2/3, 3/4}.

The fourth parameterT4 is generally set as a small value. In practice,
it can be determined as follows:
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= + × −T tB B Bmin( ) (mean( ) min( ))B B B4 4 (7)

where ∈t (0, 1)4 is an adjusting coefficient, which is generally selected
from the set of {1/2, 2/3, 3/4, 4/5, 5/6}.

The fifth and sixth parameters, T5 and T6, are size parameters to
control the height and width of the local search window in the spatial
matching procedure. Although these two parameters need to be esti-
mated for each scene, the determination process is not complex.
Generally speaking, the magnitude of the two parameters can be
coarsely determined by visual estimation according to the relative
distance between the clouds and their associated shadows. These two
parameters can then be easily fine-tuned for particular image scenes
through a few experiments.

The seventh and eighth parameters, T7 and T8, are generally selected
from the set of {3, 5, 7, 9, 11} and can be coarsely determined by the
spectral index detection efficacy. Then, through fine-tuning, the op-
timal values can be easily obtained.

In general, the parameters of the proposed CSD-SI algorithm are
fewer than those of the other state-of-the-art cloud/shadow detection
algorithms. For example, the ACCA algorithm has 35 parameters, in-
cluding 32 fixed parameters with recommended values and three dy-
namic parameters (Irish et al., 2006). In addition, the optimal values of
the proposed CSD-SI algorithm parameters can be easily obtained
through fine-tuning according to the formulations and the re-
commended values, which suggests that the proposed CSD-SI algorithm
makes sense for real remote sensing applications.

2.4. CSD-SI: Comparison with other algorithms

In order to illustrate the performance of the proposed CSD-SI al-
gorithm, the mean cloud/shadow detection precisions are compared
with those of five other well-known state-of-the-art cloud/shadow de-
tection algorithms: the ACCA algorithm (Irish et al., 2006) and F-mask
algorithm (Zhu and Woodcock, 2012) for Landsat images, the improved
F-mask based on cloud displacement index (F-mask-CDI) (Frantz et al.,
2018) for Sentinel 2 image, the machine learning and multi-feature

fusion (MLMFF) method (Bai et al., 2016) and MFC (Li et al., 2017) for
GF-1 images. The detection precision comparisons and analysis are
given in Section 4.2.

3. Experimental tests: Performance and analysis

To thoroughly evaluate the performance of the proposed CSD-SI
algorithm, the three main kinds of optical remote sensing sensors were
selected, i.e., multispectral, high-resolution, and hyperspectral. For
each kind of optical sensor, some of the most widely used and re-
presentative satellite sensors were selected. Specifically, for the multi-
spectral sensors, the three Landsat series sensors (Thematic Mapper
(TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land
Imager (OLI)) and Sentinel-2 were selected. For the high-resolution
optical sensors, GF-1 and IKONOS were selected. For the hyperspectral
sensors, MODIS and Hyperion were selected. Correspondingly, eight
different remote sensing image scenes under different geographical
environments with different cloud types were selected as the validation
datasets, with various spectral and spatial resolution levels. The cloud
amounts varied from approximately 10% to 80%. The spatial resolu-
tions ranged from kilometers to meters, and the spectral channels
varied from four to hundreds. Meanwhile, the most commonly used
accuracy assessment metrics were adopted to conduct the quantitative
evaluations based on the reference maps, which were manually drawn
via visual inspection by experienced users (Zhu and Woodcock, 2012;
Zhu et al., 2015; Li et al., 2017; Bai et al., 2016). It is worth mentioning
that all the cloud and cloud shadow pixels of each experimental image
were carefully labeled by experienced users, which could guarantee the
reliability of the quantitative assessment.

In the following, for cloud, three accuracies are provided (the
overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy
(UA)), by considering cloud and non-cloud as two classes. For cloud
shadow, two accuracies are given (PA and UA), by considering cloud
shadow and non-cloud shadow as two classes. These five accuracies are
formulated as follows (Zhu and Woodcock, 2012; Qiu et al., 2017):

Original image

Potential cloud shadows

Spatial matching

Cloud shadow refinement

Clouds

Potential
Cloud shadows

Real cloud shadow pixel

Pseudo cloud shadow pixel

Cloud pixels

Spectral test

Final cloud shadow result

Fig. 3. The process of cloud shadow detection.
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=Cloud OA 
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=

+

Cloud PA 
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+
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agreement of cloud
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=

+

Cloud shadow PA 
agreement of cloud shadow
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=

+
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agreement of cloud shadow

agreement of cloud shadow  comission of cloud shadow (8-e)

3.1. Case study: Landsat 5 TM image

3.1.1. Experimental setting
The first real-data experiment was conducted on a multispectral

image of Beijing (path/row 123/32) acquired by the Landsat 5 TM
sensor on July 6th, 2004. Beijing is situated in the northern part of
China and belongs to the northern hemisphere mid-latitude region (see
Fig. 4(a)). The reference map of the cloud and cloud shadow for this
scene is provided in Fig. 4(b). In this scene, there are both mountain
and plain regions. The clouds in this image mainly consist of thick,
opaque clouds, and are mainly distributed in the upper part of the
image, which can be seen from the false-color composite image in
Fig. 4(c). This scene is relatively challenging for cloud and cloud
shadow detection because there are significant disturbances in the
scene, including bright cement roads, rocks, dark water, topographical
shadows, and so on. The parameters of the proposed CSD-SI algorithm
were set as: =T 11 , =t 1/32 , =t 1/23 , =t 5/64 , =T 405 , =T 506 , =T 77 ,
and =T 38 , which were fine-tuned to be optimal through a few ex-
periments.

3.1.2. Results
The detection maps of the proposed CSD-SI algorithm, i.e., the cloud

detection map, the cloud shadow detection map, and the composite
cloud/shadow detection thematic map, are shown in Fig. 4(d)–(f). In
order to better demonstrate the detection performance, both the whole
image scene detection maps and local zoomed maps are provided.
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Fig. 4. Beijing Landsat 5 TM image scene (path/row 123/32) and the cloud/shadow detection results of the proposed CSD-SI detection algorithm: (a) The geo-
graphical location of the covered area. (b) The reference map. (c) The false-color composite image of Beijing (R: 4, G: 3, B: 2). (d) The composite cloud/shadow
thematic map. (e) The cloud detection map. (f) The cloud shadow detection map. (c-1)–(f-1) Local zoomed maps of the detection results labeled with the red square in
(c) to (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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From Fig. 4, it can be seen that the proposed CSD-SI algorithm
achieves a good performance in this scene. From the whole scene maps,
it can be observed that the clouds and cloud shadows are relatively
accurately identified, with the outliers caused by other bright materials
and dark topographical shadows well screened out. Specifically, both
the large cloud groups and their associated cloud shadows, e.g., in the
upper-right part of the image, and the small isolated clouds and cloud
shadows, e.g., in the upper-middle part of the image, are effectively
detected. From the local zoomed maps, it can be noted that the detected
clouds and their associated cloud shadows are basically consistent with
the false-color image, from a visual evaluation. Furthermore, the shapes
and spatial positions of the clouds and their associated shadows are
relatively well maintained, with the edges and the internal structural
details well described, which verifies the effectiveness of the proposed
CSD-SI algorithm. In general, nearly all the potential clouds and cloud
shadows are effectively detected, which suggests the effectiveness of
the proposed CI and CSI indices. Moreover, with the help of the spatial
matching strategy, the cloud shadow detection result is further refined
by removing the pseudo cloud shadows without any accompanying
clouds. However, from the local zoomed maps, it can be found that
some very small clouds are missed, accounting for approximately 9.3%,

and some pseudo cloud shadows still exit in the detection maps, ac-
counting for approximately 14.51%.

3.2. Case study: Landsat 7 ETM+ image

3.2.1. Experimental setting
The second experiment was conducted on a multispectral image

collected by the Landsat 7 ETM+ sensor over the city of Taiyuan (path/
row 125/34) on May 21st, 2014. Taiyuan is also located in the northern
part of China and is a typical landlocked city (see Fig. 5(a)). Similarly,
both mountain and plain regions are included in the scene. The clouds
mainly consist of thick, opaque clouds and mainly concentrate in the
right part of the scene, with large cloud groups surrounded by many
small clouds, which is difficult for accurate detection. The reference
map and the composite false-color image are given in Fig. 5(b) and (c),
respectively. The parameters in this scene were set as: =T 11 , =t 1/22 ,

=t 1/23 , =t 3/44 , =T 805 , =T 706 , =T 97 , and =T 58 , which were fine-
tuned to be optimal through a series of experiments.

3.2.2. Results
The cloud/shadow detection maps of the proposed CSD-SI algorithm
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Fig. 5. Taiyuan Landsat 7 ETM+ image scene (path/row 125/34) and the cloud/shadow detection results of the proposed CSD-SI detection algorithm: (a) The
geographical location of the covered area. (b) The reference map. (c) The false-color composite image of Taiyuan (R: 4, G: 3, B: 2). (d) The composite cloud/shadow
thematic map. (e) The cloud detection map. (f) The cloud shadow detection map. (c-1)–(f-1) Local zoomed maps of the detection results labeled with the red square in
(c) to (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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are shown in Fig. 5(d)–(f). Again, both the whole image scene detection
maps and local zoomed maps are provided to demonstrate the detection
performance. By comprehensively analyzing Fig. 5, it can be found that
the experimental results in this scene are consistent with those of the
first experiment, and similar conclusions can be drawn. The proposed
CSD-SI algorithm performs well in this scene by effectively detecting
the clouds and cloud shadows and relieving the disturbances caused by
other land materials with similar spectral responses, thereby achieving
a relatively good detection result. For example, the large cloud groups
and the surrounding small, isolated clouds in the right-middle part of
the image are well described in the detection results. From the whole
scene maps, it can be seen that the detected clouds and cloud shadows
are basically consistent with the false-color image, and from the local
zoomed maps, it can be observed that the shapes and spatial positions
of the clouds and cloud shadows are relatively well maintained, with
the boundaries and internal structural details relatively well described,
except for a few omissions of cloud shadows, accounting for approxi-
mately 19.47%, which further demonstrates the effectiveness of the
proposed CSD-SI algorithm.

3.3. Case study: Landsat 8 OLI image

3.3.1. Experimental setting
The third real-data experiment was conducted on a multispectral

image of the city of Kunming (path/row: 129/42) obtained by the
Landsat 8 OLI sensor on March 30th, 2017. Kunming is located in the
southern part of China (see Fig. 6(a)) and has a typical subtropical
climate. Unlike the first two scenes, this scene is a much more complex
case with a lot of thin clouds around the thick, opaque clouds, and the
cloud amount is over 80%, covering most areas of the image, which
further increases the challenge for the cloud/shadow detection task.
The reference map and the false-color composite image are provided in
Fig. 6(b) and (c), respectively. The parameters in this scene were set as:

=T 11 , =t 1/102 , =t 1/33 , =t 1/24 , =T 1005 , =T 1506 , =T 37 , and =T 38 ,
which were fine-tuned to be optimal through several experiments.

3.3.2. Results
The cloud/shadow detection maps of the proposed CSD-SI algorithm

are shown in Fig. 6(d)–(f). From Fig. 6, it can be observed that some
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Fig. 6. Kunming Landsat 8 OLI image scene (path/row 129/42) and the cloud/shadow detection results of the proposed CSD-SI detection algorithm: (a) The
geographical location of the covered area. (b) The reference map. (c) The false-color composite image of Kunming (R: 5, G: 4, B: 3). (d) The composite cloud/shadow
thematic map. (e) The cloud detection map. (f) The cloud shadow detection map. (c-1)–(f-1) Local zoomed maps of the detection results labeled with the red square in
(c) to (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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very thin clouds around the thick, opaque clouds are not detected, ac-
counting for approximately 10.39%, especially for the upper-left part of
the image, which limits the detection performance, to some degree.
However, in general, the proposed CSD-SI algorithm still achieves an
acceptable detection performance by effectively identifying most of the
clouds together with their associated shadows, and screening out the
noise and disturbances. From both the whole scene maps and the local
zoomed maps, it can be observed that most parts of the cloud detection
map and cloud shadow detection map are basically consistent with the
false-color image, from a visual evaluation, with the edges and details
of the clouds and cloud shadows relatively well maintained, which
verifies the effectiveness of the proposed algorithm.

3.4. Case study: Sentinel-2 image

3.4.1. Experimental setting
The forth real-data experiment was conducted on an image acquired

by the Sentinel-2 sensor over the city of Hangzhou (see Fig. 7(a)).
Hangzhou is located in the eastern coastal area of China, and a large
amount of rivers are found within the area. Sentinel-2 is a widely used
multispectral sensor with 13 spectral channels, which was launched by
the European Space Agency in 2015. It has three different spatial re-
solutions with high quality: 10m, 20m, and 60m. To be consistent with
the former experiments, a typical scene of Hangzhou was selected. In
this scene, both thick, opaque clouds and thin clouds are included,
evenly distributed in the whole image. Bands 1, 2, 3, 8, 11, and 12 were
utilized as BB, BG, BR, BNIR, −BSWIR 1, and −BSWIR 2, respectively. To unify
the spatial resolution, bands 1, 2, 3, and 8 were first resampled to have
the same spatial resolution as bands 11 and 12. The image scene was
then at a size of ×5490 5490, with a spatial resolution of 20m. The
parameters of the proposed CSD-SI algorithm were set as: =T 11 ,

=t 1/102 , =t 3/43 , =t 4/54 , =T 205 , =T 106 , =T 37 , and =T 58 . The re-
ference map and the false-color image for this scene are provided in
Fig. 7(b) and Fig. 7(c), respectively.
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Fig. 7. Hangzhou Sentinel-2 image scene and the cloud/shadow detection results of the proposed CSD-SI detection algorithm: (a) The geographical location of the
covered area. (b) The reference map. (c) The false-color composite image of the acquired Hangzhou Sentinel-2 image scene (R: 8, G: 3, B: 2). (d) The composite cloud/
shadow thematic map. (e) The cloud detection map. (f) The cloud shadow detection map. (c-1)–(f-1) Local zoomed maps of the detection results labeled with the red
square in (c) to (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4.2. Results
The detection maps of the proposed CSD-SI algorithm are given in

Fig. 7(d)–(f). From Fig. 7, it can be seen that the proposed CSD-SI al-
gorithm achieves a relatively good detection performance for this
scene. From the whole scene maps and the local zoomed maps, it can be
seen that the CSD-SI algorithm effectively detects most of the clouds
and their associated shadows, with the edges and details of the clouds
and cloud shadows relatively well kept. For the lower-right corner of
the image in particular, the details of the clouds and their associated
cloud shadows are well maintained. From the composite cloud/shadow
thematic map, it can be observed that the detection result is basically
consistent with the false-color image. However, it can also be noted that
many thin clouds are missed, accounting for approximately 14.58%,
especially for the upper part of the image, which limits the detection
performance, to some degree.

3.5. Case study: GF-1 image

3.5.1. Experimental setting
The fifth experiment was conducted using data acquired by the WFV

sensor of the GF-1 satellite, which was developed by the Chinese
Aerospace Science and Technology Corporation and is a kind of high
spatial resolution Earth observation satellite. The GF-1 satellite was
launched in 2013, with four multispectral bands at a spatial resolution
of 8m and a panchromatic band at a spatial resolution of 2m. In this
experiment, a typical scene over the city of Harbin at a size
of ×15726 15361 was selected. Harbin is located in the northern part of
China and has a subtropical climate (see Fig. 8(a)). This scene has a
relatively large cloud amount, which is mainly concentrated in the right
part of the image, with both thick, opaque clouds and thin clouds in-
cluded. In addition, only four spectral bands can be accessed, and in the
infrared range, only the NIR band is included, which leads to the ac-
cessible spectral information being relatively limited, further increasing
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Fig. 8. Harbin GF-1 image scene and the cloud/shadow detection results of the proposed CSD-SI detection algorithm: (a) The geographical location of the covered
area. (b) The reference map. (c) The false-color composite image of the acquired Harbin GF-1 image scene (R: 4, G: 3, B: 2). (d) The composite cloud/shadow thematic
map. (e) The cloud detection map. (f) The cloud shadow detection map. (c-1)–(f-1) Local zoomed maps of the detection results labeled with the red square in (c) to (f).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the challenge of the cloud/shadow detection. Bands 1, 2, 3, 4, 4, and 4
were utilized asBB, BG, BR, BNIR, −BSWIR 1, and −BSWIR 2, respectively. The
parameters of the proposed CSD-SI algorithm were set as: =T 11 ,

=t 1/32 , =t 2/33 , =t 2/34 , =T 405 , =T 106 , =T 97 , and =T 38 . The re-
ference map and the false-color image for this scene are shown in
Fig. 8(b) and Fig. 8(c), respectively.

3.5.2. Results
The cloud and cloud shadow detection maps are shown in

Fig. 8(d)–(f). From Fig. 8, it can be seen that the proposed CSD-SI al-
gorithm achieves a good performance for this scene, even though the
accessible spectral information is very limited. The proposed CSD-SI
algorithm effectively detects most of the clouds and their associated
shadows, while removing the outliers. In the upper-right part of the
image, both the large cloud groups and the small, isolated clouds are
relatively well detected. From the whole scene maps, it can be seen that
the detection results are basically consistent with the false-color image.
From the local zoomed maps, it can be observed that the edges and
details of the clouds and cloud shadows are also relatively well kept. In

addition, it is worth mentioning that both the thick, opaque clouds and
the thin clouds are well identified in this scene, which further verifies
the effectiveness of the proposed algorithm.

3.6. Case study: IKONOS image

3.6.1. Experimental setting
The sixth experiment was conducted on another high spatial re-

solution optical image acquired by the IKONOS sensor, to further test
the effectiveness of the proposed CSD-SI algorithm for the four-band
high-resolution optical remote sensing sensors. The IKONOS satellite
was launched in U.S. in 1999 and was the first commercial high-re-
solution optical remote sensing satellite. IKONOS has a panchromatic
band at a spatial resolution of 1m and four multispectral bands at a
spatial resolution of 4m. A typical scene over the north of Hong Kong at
a size of ×1000 1000 was selected. Hong Kong is located in the southern
coastal area of China (see Fig. 9(a)). This scene differs from the former
images, as the cloud/shadow region is mainly found over the river.
Therefore, it is a challenging scene for cloud shadow detection because
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Fig. 9. Hong Kong IKONOS image scene and the cloud/shadow detection results of the proposed CSD-SI detection algorithm: (a) The geographical location of the
covered area. (b) The reference map. (c) The false-color composite image of the acquired Hong Kong IKONOS image scene (R: 4, G: 3, B: 2). (d) The composite cloud/
shadow thematic map. (e) The cloud detection map. (f) The cloud shadow detection map. (c-1)–(f-1) Local zoomed maps of the detection results labeled with the red
square in (c) to (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of the high similarity between water and cloud shadow. Bands 1, 2, 3, 4,
4, and 4 were utilized as BB, BG, BR, BNIR, −BSWIR 1, and −BSWIR 2, re-
spectively. The parameters of the proposed CSD-SI algorithm were set
as: =T 11 , =t 1/62 , =t 1/23 , =t 4/54 , =T 1505 , =T 1706 , =T 77 , and

=T 78 . The reference map and the false-color image for this scene are
given in Fig. 9(b) and Fig. 9(c), respectively.

3.6.2. Results
The cloud and cloud shadow detection maps are shown in

Fig. 9(d)–(f). From Fig. 9, it can be seen that the proposed CSD-SI al-
gorithm performs well, obtaining a relatively good detection result for
this scene. From the whole scene maps, it can be seen that both the
thick, opaque clouds and most of the thin clouds around the thick
clouds are relatively well identified, with most of their associated
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Fig. 10. Beijing MODIS image scene and the cloud/shadow detection results of the proposed CSD-SI detection algorithm: (a) The geographical location of the covered
area. (b) The reference map. (c) The false-color composite image of the acquired Beijing MODIS image scene (R: 2, G: 1, B: 4). (d) The composite cloud/shadow
thematic map. (e) The cloud detection map. (f) The cloud shadow detection map. (c-1)–(f-1) Local zoomed maps of the detection results labeled with the red square in
(c) to (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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shadows, including the parts cast on water, effectively detected. How-
ever, some thin clouds and cloud shadows are missed by the proposed
CSD-SI algorithm, accounting for approximately 7.33% and 13.96%,
respectively. From the local zoomed maps, it can be seen that the de-
tected clouds and cloud shadows are basically consistent with the false-
color image, with the edges and the details relatively well maintained.

3.7. Case study: MODIS image

3.7.1. Experimental setting
In the seventh real-data experiment, a low spatial resolution hy-

perspectral image was utilized to evaluate the effectiveness of the
proposed CSD-SI algorithm on a hyperspectral sensor. This image was
acquired by the MODIS sensor with 36 spectral channels over Beijing.
MODIS is one of the most important optical remote sensing sensors for
Earth observation, and its data have been widely used in many fields
(Xiao et al., 2005; Chen et al., 2007). MODIS provides three low spatial
resolutions: 250m, 500m, and 1000m. As in the former experiments, a
typical scene at a size of ×4080 2708 was selected, in which a large part
of the image is contaminated by clouds and cloud shadows, with both
thick, opaque clouds and thin clouds included. Bands 3, 4, 1, 2, 6, and 7
were utilized as BB, BG, BR, BNIR, −BSWIR 1, and −BSWIR 2, respectively. The
parameters of the proposed CSD-SI algorithm were set as: =T 11 ,

=t 1/102 , =t 2/33 , =t 1/24 , =T 255 , =T 206 , =T 37 , and =T 38 . The re-
ference map for this scene is provided in Fig. 10(b), with the false-color
image given in Fig. 10(c).

3.7.2. Results
The detection maps are shown in Fig. 10(d)–(f). From Fig. 10, it can

be clearly observed that the proposed CSD-SI algorithm achieves a good
detection performance for this scene. Most of the clouds and their as-
sociated shadows are effectively identified, with the edges and details
relatively well kept, which can be seen from both the whole scene maps
and the local zoomed maps. From the composite cloud/shadow the-
matic map, it can be seen that the detection result is basically consistent
with the false-color image.

3.8. Case study: Hyperion image

3.8.1. Experimental setting
In order to further test the effectiveness of the proposed CSD-SI

algorithm for hyperspectral images, which are very important data re-
source for remote sensing applications (Zhang et al., 2016; He et al.,
2016; He et al., 2017), another hyperspectral dataset acquired by the
Hyperion sensor with 240 spectral channels at a moderate resolution of
30m was utilized to conduct the eighth real-data experiment. Hyperion
is an important hyperspectral sensor carried by the Earth Observing-1
(EO-1) satellite and is widely used in various fields. For consistency, a
typical scene over the city of Fuzhou at a size of ×3421 961 was se-
lected. In this scene, the cloud amount is relatively high and the clouds
mainly consist of thick, opaque clouds, with most areas covered by
clouds and cloud shadows. Bands 14, 22, 32, 50, 146, and 204 were
utilized as BB, BG, BR, BNIR, −BSWIR 1, and −BSWIR 2, respectively. The
parameters of the proposed CSD-SI algorithm were set as: =T 11 ,

=t 1/102 , =t 1/23 , =t 3/44 , =T 105 , =T 306 , =T 37 , and =T 38 . The re-
ference map and the false-color image for this scene are provided in
Fig. 11(b) and Fig. 11(c), respectively.

3.8.2. Results
The cloud and cloud shadow detection maps are shown in

Fig. 11(d)–(f). From the figure, it can be found that the proposed CSD-SI
algorithm achieves a good detection performance for this scene. From
both the whole scene maps and the local zoomed maps, it can be seen
that the detection results are basically consistent with the false-color
image, with the edges and details of the clouds and cloud shadows
relatively well maintained. Even for the very small clouds close to the

large clouds in the middle part of the image, the proposed CSD-SI al-
gorithm performs well.

4. Discussion

4.1. Algorithm evaluation: The case studies

A number of experiments were conducted to analyze the influence
of the eight parameters of the proposed CSD-SI algorithm on the de-
tection performance. To exclude the influence of sensors with different
spectral channel settings, five representative experimental images ac-
quired by five different sensors under different situations (i.e., different
cloud amounts, different cloud types, and different land covers) were
selected, i.e., the Beijing TM image, the Hangzhou Sentinel-2 image, the
Hong Kong IKONOS image, the Beijing MODIS image, and the Fuzhou
Hyperion image. As the Landsat ETM+ and OLI sensors have similar
spectral channel settings to the TM sensor, and the GF-1 sensor is very
similar to the IKONOS sensor, they were not utilized in the analysis.

Both PA and UA were utilized to analyze the influence of these
parameters on the performance of the proposed CSD-SI algorithm. It
should be noted that parametersT2,T3, andT4 are in fact decided by t2, t3,
and t4, respectively, according to formulations (5)–(7). Therefore, for
convenience, we only need to analyze the influence of t2, t3, and t4 in
practice. The PA and UA change trend curves with various values of
each parameter under the five different scenes are shown in Fig. 12. A
common strategy was utilized, i.e., when analyzing one parameter, the
other parameters were fixed at their optimal values.

By comprehensively analyzing Fig. 12, it can be found that para-
meters T2,T3, and T4 are more sensitive than the other parameters. T2, T3,
and T4 are the threshold parameters of the proposed CI and CSI indices
for cloud and cloud shadow detection. However, the optimal values of
these parameters generally change in a narrow range and can be easily
determined for certain image scenes through fine-tuning according to
the recommended values of these parameters. The other parameters are
less sensitive and the detection performance changes little with the
change of these parameters, or is relatively stable in a certain range. In
summary, all eight parameters of the proposed CSD-SI algorithm can be
easily fine-tuned according to the given formulations and the re-
commended values in practice. Therefore, CSD-SI does make sense for
real applications.

4.2. Precision analysis and time consumption for the CSD-SI algorithm

In this section, we compare the mean detection precisions of the
proposed CSD-SI algorithm with those of five other state-of-the-art
methods: ACCA (Irish et al., 2006), F-mask (Zhu and Woodcock, 2012),
F-mask-CDI (Frantz et al., 2018), MLMFF (Bai et al., 2016), and MFC (Li
et al., 2017). The results are listed in Table 1.

From the table, it can be seen that although the working mechanism
of the proposed CSD-SI algorithm is simple, it can achieve a cloud and
cloud shadow detection performance that is comparable with that of
the five other state-of-the-art methods. For Landsat series imagery, CSD-
SI achieves a competitive cloud and cloud shadow detection perfor-
mance with regard to the state-of-the-art F-mask algorithm, and it
clearly outperforms the ACCA algorithm. Specifically, for cloud, the
proposed CSD-SI algorithm achieves a mean PA of 91.83%, which is
comparable with the F-mask algorithm, i.e., 92.10%, and is better than
the result of the ACCA algorithm, i.e., 72.10%. In addition, the mean
UA of the proposed CSD-SI algorithm is 97.61%, which is higher than
that of F-mask and ACCA, i.e., 89.40% and 91.8%. For cloud shadow,
the ACCA algorithm fails to give a mean evaluation and the F-mask
algorithm obtains a PA of 70%+ and a UA of 50%+. Compared with
these two algorithms, the proposed CSD-SI algorithm performs better,
with the PA and UA both over 80%, which verifies the effectiveness of
the proposed algorithm.

For Sentinel 2 image, the proposed CSD-SI algorithm achieves a
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comparable performance compared with the state-of-the-art F-mask-
CDI algorithm. Specifically, for cloud, it achieves a higher OA of
97.24% and higher UA of 98.32% than that of F-mask-CDI, and a lower
PA of 85.42% compared with the values of F-mask-CDI. For cloud
shadow, the proposed CSD-SI achieves a PA of 82.67% and a UA of
81.37%, while F-mask-CDI does not give a mean evaluation as it is
specifically designed for cloud detection.

Similarly, for the GF-1 image, the proposed CSD-SI algorithm
achieves a comparable performance when compared with the state-of-
the-art MLMFF and MFC algorithms. Specifically, for cloud, it achieves
an OA of 99.31%, with a PA and UA of 98.23% and 99.22%, respec-
tively, which are higher than the values obtained by the MLMFF and
MFC algorithms. For cloud shadow, it achieves a PA of 79.99% and a
UA of 91.64%, which are higher than the values obtained by the MFC
algorithm. MLMFF fails to give a mean evaluation for cloud shadow as
it is specifically designed for cloud detection. It is worth mentioning
that for the other high spatial resolution optical sensor, i.e., IKONOS,

the proposed CSD-SI algorithm again achieves a good performance,
which further confirms its effectiveness for high-resolution optical
sensors. Specifically, for the IKONOS image, it achieves an OA of
99.27%, a PA of 92.67%, and a UA of 95.44% for cloud. Meanwhile, for
cloud shadow, it achieves a PA of 86.04% and a UA of 85.49%.

The mean quantitative evaluation results of the cloud and cloud
shadow detection results of all eight widely used optical remote sensing
sensors are given in Table 1. It can be seen from the table that the
proposed CSD-SI algorithm generally achieves comparable OA, UA, and
PA values. Specifically, for cloud, it achieves a mean PA and a mean UA
of 93.13% and 98.13%, respectively, and for cloud shadow, it achieves
a mean PA of 84.33% and a mean UA of 89.12%, which are at relatively
high levels. Overall, it can be concluded that the proposed CSD-SI al-
gorithm is an effective multi-source cloud and cloud shadow detection
method for most of the widely used optical sensors with both visible
and infrared spectral channels. From this perspective, it makes sense for
practical remote sensing applications.
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Fig. 11. Fuzhou Hyperion image scene and the cloud/shadow detection results of the proposed CSD-SI detection algorithm: (a) The geographical location of the
covered area. (b) The reference map. (c) The false-color composite image of the acquired Fuzhou Hyperion image scene (R: 50, G: 32, B: 22). (d) The composite
cloud/shadow thematic map. (e) The cloud detection map. (f) The cloud shadow detection map. (c-1)–(f-1) Local zoomed maps of the detection results labeled with
the red square in (c) to (f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. The producer’s accuracy (PA) and user’s accuracy (UA) versus each parameter of the proposed CSD-SI algorithm for the five different scenes, with the first
row, second row, third row, fourth row, fifth row, sixth row, and seventh row denoting the sensitivity analysis of parameters T1, t2, t3, t4, T5 and T6, T7, T8,
respectively. (a) Beijing TM image scene. (b) Hangzhou Sentinel-2 image scene. (c) Hong Kong IKONOS image scene. (d) Beijing MODIS image scene. (e) Fuzhou
Hyperion image scene.
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We now come to the time consumption analysis for the proposed
CSD-SI algorithm. The time consumption of the proposed CSD-SI al-
gorithm is relatively low, owing to its simple working mechanism. CSD-
SI consists of two main steps: the spectral index tests and the spatial
matching refinement. The experimental program was coded in MATLAB
on a personal computer with an Intel Core i7-6700HU CPU and 12 GB of
memory. The detailed running times for all eight optical sensors, in-
cluding the spectral test time, the spatial matching time, and the total
time, are listed in Table 2.

From Table 2, it can be seen that the first step, the spectral index
tests, is very fast and only needs a few seconds for the whole large
image scenes, whereas the second step, spatial matching refinement, is
relatively time-consuming. Depending on the image size and the size of
the local search window, the time for this step varies from several
minutes to dozens of minutes. All in all, the time consumption of the
proposed CSD-SI algorithm is relatively low, owing to its simple me-
chanism. In addition, for real applications, the proposed CSD-SI algo-
rithm could be implemented in C++ code with the parallel computing

technique to accelerate the computation speed, which would further
decrease the running time to a large degree.

4.3. Performance evaluation: The case studies

In this section, we comprehensively analyze the performance of the
proposed CSD-SI algorithm and compare the detection performance in
the different case studies both qualitatively and quantitatively, with the
quantitative assessments of the eight experiments provided in Table 3.

For the first two multispectral image scenes, i.e., the Landsat 5 TM
Beijing image scene and the Landsat 7 ETM+ Taiyuan image scene, in
which the clouds mainly consist of thick, opaque clouds, the proposed
CSD-SI algorithm performs well and achieves good detection results. It
effectively detects most of the clouds and cloud shadows and relieves
the disturbances caused by other land materials with similar spectral
responses, owing to the effectiveness of the proposed CI and CSI indices
and the spatial matching strategy. Specifically, for cloud, it achieves PA
values of 90.70% and 95.18% and UA values of 96.96% and 97.06% for
the Beijing TM image and Taiyuan ETM+ image, respectively, which
suggests that both the omission rate and commission rate are relatively
low. For cloud shadow, the proposed CSD-SI algorithm achieves a PA of
90.31% and a UA of 85.49% for the Beijing TM image and achieves a
PA of 80.53% and a UA of 96.98% for the Taiyuan ETM+ image, which
can also be considered as good results.

Compared with the two former multispectral image scenes, the
cloud detection precisions for the Landsat 8 OLI Kunming image scene
and the Sentinel-2 Hangzhou image scene are relatively low. Many thin
clouds around the thick, opaque clouds in these two scenes are not
effectively detected, due to the limited detection capability of the
proposed CI index for very thin clouds. Specifically, for cloud, the
proposed CSD-SI algorithm achieves PA values of 89.61% and 85.42%
for the Kunming OLI image and Hangzhou Sentinel-2 image, respec-
tively. The UA values for cloud are again at a high level, i.e., 99.07%
and 98.32%, which means that few pixels of other land materials are

Table 1
Mean cloud and cloud shadow detection precisions of the different cloud/
shadow detection methods (Zhu and Woodcock, 2012; Li et al., 2017; Bai et al.,
2016; Frantz, et al., 2018).

Sensor Method Type Overall
accuracy
(%)

Producer’s
accuracy (%)

User’s
accuracy
(%)

Landsat 7
ETM+

ACCA Cloud 84.8 72.1 91.8
Cloud
shadow

– – –

Landsat F-mask Cloud 96.41 92.10 89.40
Cloud
shadow

– >70 >50

Landsat CSD-SI Cloud 97.92 91.83 97.61
Cloud
shadow

– 83.07 92.36

Sentinel-2 F-mask-CDI Cloud 95.00 99.00 93.00
Cloud
shadow

– – –

Sentinel-2 CSD-SI Cloud 97.24 85.42 98.32
Cloud
shadow

– 82.67 81.37

GF-1 MFC Cloud 98.30 88.78 94.36
Cloud
shadow

– 74.66 74.48

GF-1 MLMFF Cloud > 91.45 93.67 95.67
Cloud
shadow

– – –

GF-1 CSD-SI Cloud 99.31 98.23 99.22
Cloud
shadow

– 79.99 91.64

All eight
optical
sensors

CSD-SI Cloud 98.52 93.13 98.13
Cloud
shadow

– 84.33 89.12

Table 2
The running times for the eight different optical sensor image scenes.

Image scene no. 1 2 3 4 5 6 7 8

Spectral tests (sec) 41.35 43.51 55.19 11.82 59.79 0.82 3.65 1.33
Spatial matching

(min)
39.81 40.66 50.83 5.80 70.53 13.70 0.31 1.29

Total time (min) 40.50 41.39 51.75 6.00 71.53 13.71 0.37 1.31

1: Landsat 5 TM image scene; 2: Landsat 7 ETM+ image scene; 3: Landsat 8 OLI
image scene; 4: Sentinel 2 image scene; 5: GF-1 image scene; 6: IKONOS image
scene; 7: MODIS image scene; 8: Hyperion image scene.

Table 3
The quantitative evaluation of the precision of the proposed CSD-SI algorithm
for the eight different optical sensor image scenes with different spectral and
spatial resolution levels.

Sensor Image scene Type Overall
accuracy
(%)

Producer’s
accuracy (%)

User’s
accuracy
(%)

Landsat5
TM

Beijing Cloud 99.72 90.70 96.69
Cloud
shadow

– 90.31 85.49

Landsat7
ETM+

Taiyuan Cloud 99.79 95.18 97.06
Cloud
shadow

– 80.53 96.98

Landsat8
OLI

Kunming Cloud 94.24 89.61 99.07
Cloud
shadow

– 78.38 94.60

Sentinel-2 Hangzhou Cloud 97.24 85.42 98.32
Cloud
shadow

– 82.67 81.37

GF-1 WFV Harbin Cloud 99.31 98.23 99.22
Cloud
shadow

– 79.99 91.64

IKONOS Hong Kong Cloud 99.27 92.67 95.44
Cloud
shadow

– 86.04 85.49

MODIS Beijing Cloud 98.90 95.14 99.56
Cloud
shadow

– 80.14 88.57

Hyperion Fuzhou Cloud 99.67 98.07 99.67
Cloud
shadow

– 96.54 88.79
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misclassified as cloud. For cloud shadow, the detection precisions are
lower compared with the previous two experimental images, as the
serious disturbances caused by the topographical shadows make the
cloud shadow detection more challenging. Specifically, the proposed
CSD-SI algorithm achieves PA values of 78.38% and 82.67% and UA
values of 94.60% and 81.37% for the Kunming OLI image and
Hangzhou Sentinel-2 image, respectively. Overall, the detection preci-
sions for cloud and cloud shadow in these two scenes can still be con-
sidered as acceptable.

We now turn to the experimental results obtained with the two four-
band high-resolution optical remote sensing image scenes, i.e., the
Harbin GF-1 WFV image scene and the Hong Kong IKONOS image
scene. It can be found that the proposed CSD-SI algorithm again works
well and achieves good detection results with relatively high detection
precisions for these two image scenes, even though the accessible
spectral information is very limited. For cloud, most of the thick,
opaque clouds and the thin clouds around them are accurately detected,
with the disturbances well removed, which further illustrates the ef-
fectiveness of the proposed CI index. Meanwhile, the cloud shadows are
also well detected. It is worth mentioning that, for the Hong Kong
IKONOS image scene, most of the cloud shadows are cast on the river,
which results in a very challenging task for cloud shadow detection, due
to the similar spectral characteristics of water and cloud shadow. It can
be found that most of the cloud shadows are well separated from the
water, which further shows the effectiveness of the proposed CSI index
and the spatial matching strategy. Specifically, the CSD-SI algorithm
achieves PA and UA values of 98.23% and 99.22% for cloud and
79.99% and 91.64% for cloud shadow for the Harbin GF-1 WFV image,
with the PA and UA values being 92.67% and 95.44% for cloud and
86.04% and 85.49% for cloud shadow for the Hong Kong IKONOS
image. In summary, the proposed CSD-SI algorithm can also be effec-
tively applied to the four-band high-resolution optical remote sensing
sensors.

For the last two experiments conducted on hyperspectral sensor
image scenes, i.e., the Beijing MODIS image scene and the Fuzhou
Hyperion image scene, it can be found that the proposed CSD-SI algo-
rithm again performs well and achieves a relatively good performance
by accurately detecting most of the clouds and cloud shadows and ef-
fectively removing the disturbances. Specifically, for cloud, it achieves
PA values of 95.14% and 98.07% and UA values of 99.56% and 99.67%
for the Beijing MODIS image scene and the Fuzhou Hyperion image
scene, respectively, which are at a relatively high level in practice. For
cloud shadow, it achieves PA values of 80.14% and 96.54% and UA
values of 88.57% and 88.79% for the Beijing MODIS image scene and
the Fuzhou Hyperion image scene, respectively. In summary, the results
of these two experiments suggest that the proposed CSD-SI algorithm
can also be effectively applied to hyperspectral sensors.

By comprehensively analyzing the results of the eight experiments,
it can be concluded that the proposed CSD-SI algorithm can be con-
sidered as a unified method for various kinds of widely used optical
remote sensing sensors with both visible and infrared bands, including
both multispectral and hyperspectral sensors, and low-resolution and
high-resolution sensors, which proves its effectiveness and general-
izability. From this perspective, the proposed CSD-SI algorithm makes
sense for practical remote sensing applications.

5. Conclusion

In this paper, we have proposed a unified cloud/shadow detection
algorithm based on spectral indices (CSD-SI) for multi/hyperspectral
optical remote sensing sensors with both visible and infrared spectral
channels. Based on the spectral reflective characteristics of cloud and
cloud shadow, the CI and CSI indices are proposed to indicate the po-
tential clouds and cloud shadows, respectively. Considering the spatial
coexistence between clouds and their associated shadows, a spatial
matching strategy is further utilized to refine the cloud shadow

detection result, which can effectively screen out the outliers caused by
topographical shadows and other dark land materials. Eight different
types of multi/hyperspectral optical remote sensing images with var-
ious cloud types and cloud amounts in different geographical environ-
ments were utilized to demonstrate the effectiveness of the proposed
CSD-SI algorithm. The results clearly show that the proposed CSD-SI
algorithm is, indeed, a unified cloud/shadow detection method which
can work well for various types of optical sensors with both visible and
infrared spectral channels, including both multispectral and hyper-
spectral sensors with various spatial resolution levels.

However, there is still some room for improvement of the proposed
algorithm. For thin cirrus clouds, the performance of the proposed CSD-
SI algorithm is limited. In addition, the cloud shadow detection cap-
ability could be further improved by combining the proposed CSD-SI
algorithm with a geometrical method to better separate cloud shadows
from water. All of these issues will be addressed in our future work.
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